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Chemical Space: Missing Pieces in Cheminformatics
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ABSTRACT Cheminformatics is at a turning point, the
pharmaceutical industry benefits from using the various
methods developed over the last twenty years, but in our
opinion we need to see greater development of novel
approaches that non-experts can use. This will be achieved
by more collaborations between software companies,
academics and the evolving pharmaceutical industry. We
suggest that cheminformatics should also be looking to other
industries that use high performance computing technologies
for inspiration. We describe the needs and opportunities which
may benefit from the development of open cheminformatics
technologies, mobile computing, the movement of software to
the cloud and precompetitive initiatives.
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INTRODUCTION

Measure what is measurable, and make measurable what is not
so. -Galileo Galilei

2009 was the international year of astronomy celebrated in
books, exhibitions and beyond all around the world, all because
Galileo had the good sense 400 years ago to apply a technology
invented by others (two lenses at opposite ends of a tube to form
a telescope) that allowed him to see the stars beyond our solar
system and forever change our understanding of it. Drug
discovery needs a few Galileos to bring in technologies from
other fields, and the timing is right to be provocative and
provide a long overdue paradigm shift (1). Are there
technologies that we could bring together in pharmaceutical
research that may seem rather simplistic yet if combined could
lead to new insights? A case of the parts being greater than the
whole, we are sure Aristotle would approve. We are motivated
to suggest this because our particular field of interest,
cheminformatics, is still mired in addressing fundamental
problems that have existed for decades. We believe that this
may not be unique to us and our rather narrow perspective
and could be of much broader interest, as other facets of
pharmaceutical research and development could benefit from
the opportunity to reassess the situation (motivated by
company mergers, discussion of new R&D models, precom-
petitive approaches, more collaborations, etc.) (2–4). As we
know, it is also important to access your progress as you
participate in a research project, whether developing a drug
or a technology, take stock and change direction as necessary.
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THE COMET

In our humble opinion, as users of cheminformatics software for
anywhere from 13 tomore than 20 years, we have seen the field
plagued with several unresolved issues and apparent unneces-
sary repetition, like a comet that revisits us periodically. First,
the major innovative cheminformatics developments could be
recognized to have largely been initiated in the 1980s, and early
1990s, e.g. the following represents examples of technologies
that includes comparativemolecular field analysis (CoMFA) (5),
docking (6), pharmacophores (7–9), 3D database searches
(10,11), molecular descriptors (12) and similarity searching
(13). Without wishing to offend our colleagues, we think they
would agree that many improvements have been relatively
cosmetic compared with the development of whole new
transformational or disruptive technologies. We have also
seen the few software companies that control this space
essentially try to mimic the same technologies of their
competitors, so we are in the position of having several
platforms for storing and mining molecules, many docking,
QSAR or other searching methods, etc. Competition is a
good thing, but the wheel has already been invented. These
computational technologies could, in most eyes in the
pharmaceutical industry, now be seen as commodities. Truly
novel developments have been mostly in 1) infrastructure,
e.g., providing models on company intranets; 2) pipelining
tools for workflow or in hardware (shift away from SGI to
clusters running Linux, GRID and on the cloud, etc.); 3)
applying models for other areas, e.g., ADME/Tox (14–17);
and 4) a philosophical mindset change in the recent
development of an open chemistry development kit (CDK)
(18), crowdsourcing (19), combinatorial model building (20),
parallel assessment of many model algorithms/descriptor
combinations (21,22), secure sharing of chemical information
(21) and collaborations between groups. While some of the
latter developments are in the early stages, we think they are
positioned well to stand apart from what has existed before.

As we have perhaps the most experience with QSAR
methods and descriptors, we will use this as our example
throughout. From our experience using very large datasets
(tens to hundreds of thousands), we see that the best models on
average have a test set correlation of approximately 80% (a best
case) (22). This is comparable to the predominantly in vitro
data used to build the models, as these will have a cutoff for
predictivity. As has been noted in a prior commentary, we
have reached a peak (or at least a plateau) in prediction
accuracy for blood brain barrier (BBB) modeling, and this is
likely the case elsewhere (23). We therefore do not believe that
the development of new descriptors (whether 2D or 3D), or
even quantitative structure-activity relationship (QSAR) algo-
rithms, is really needed for cheminformatics, as these will only
provide incremental advances, although we place some
caveats to this statement. There may be some difficult targets

that are intractable to model with the currently available
algorithms and descriptors (although to our knowledge no one
has exhaustively tried to build ligand-based models for all
known biological drug targets). Some have tried to focus on,
for example, GPCRs but did not comment on the model
quality for each protein (24,25), so there is still much to be
done, and perhaps our collective energies can be focused on
the following important issues.

THE UNIVERSE

While some methods like CoMFA may by their very nature
limit you to molecular structures that are highly similar to the
training set (local model), others may enable you to make
predictions for compounds far away from the training set
without providing the user with any reference to whether the
model is interpolating or extrapolating (concepts we can all
understand). While a model may be useful for making
predictions for molecules close to the training set, this may
not be the case for compounds that are far away in chemical
similarity space. The uninitiated may have no idea of this
limitation and have no concept of what they have stumbled
into. Therefore, the area of concern to most using a
predominantly ligand-based computationalmodel, e.g.,QSAR
or pharmacophore, is answering the question “Is the prediction
reliable?” Providing the user with some confidence in the
prediction has only been partially addressed by the efforts at
providing an applicability domain using Tanimoto similarity,
PCA, clustering, Mahalanobis distance, etc. (28–36).

Generally, any QSAR model will either be local (narrow
structural diversity to one chemotype) or global (diverse array
of molecules), but even the latter case will just have coverage of
a small fraction of chemical space. What may be needed is
some anchoring or benchmarking of a model based on the
known chemical space (measured using some physicochemical
or substructure descriptors) of a set of drugs, chemicals or
reference databases, e.g., taking a ChemGPS-type approach
(26). This would provide the user with only the coverage of a
reference space for their model and goes only part way to
providing some confidence. Model quality based on testing
data could be another component; prediction probability
based on the QSAR algorithm used provides a further
dimension, while a consensus across all these approaches
could be a stronger measure than any in isolation. We feel
there is still an immense unmet need and opportunity here to
develop standards for the applicability domain of a model and
when predictions should be avoided.

THE BLACK HOLE

Another major issue that cheminformatics has failed to
address is that current computational chemistry software
companies have generally catered to the computational
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modeling community and have not done well in translating
their tools to bench biologists and chemists (in comparison
to some of the bioinformatics tools like BLAST searching
that are widely used by non-bioinformaticians). Subse-
quently, in most cases, you have to be an expert to use most
computational chemistry tools, with prior knowledge of
what a method can and cannot do. These tools do not
teach you as you go. Future cheminformatics tools have to
consider their audience before assuming that any scientist
will use them; the barrier to entry has to be as low as using
Google, Facebook and Twitter, etc. Admittedly, this may
be a lot to ask because these tools are very general in nature
and have to appeal to non-scientists, whereas cheminfor-
matics is much more specialized. However, if cheminfor-
matics is to spread its user base, it is essential the tools
become used by non-experts with minimal training.
Methods should ask the user what they want to do, then
provide a path to achieving their aims. The software
complexities should be translated in a way that is
understandable by anyone regardless of whether or not
they have any prior computational experience.

Allied with this is the interpretability of a model prediction.
Part of the problem with some QSAR approaches is that a
model output is not inherently understandable. While the
models may be black boxes, the outputs could be thought of as
black holes (taking time and resources away from other
projects), as they are not widely embraced. There have been
efforts made at ADME data visualization (27–32), while
expanding these approaches to show outputs from multiple
computational models in a color-coded or symbolic manner
may be preferable. Again, development of truly novel, simple
and interpretable data visualization methods capable of
handling the massive growth in experimental and computa-
tional data is long overdue.

THE RED DWARF

Having identified some long unresolved issues which we still
face, what can each stakeholder do (industry, academia,
software developer, etc.)? As the industry is changing so rapidly,
this places the software providers in an undeniably difficult
position, so what can they do? They might want to ask their
customers before developing some new software or software
suite. Building it will not guarantee that people will buy it.
Please do invest in R&D. For a healthy cheminformatics field,
we all need to support educational and training efforts to bring
in more talented minds (e.g., University of Sheffield, UK
http://www.shef.ac.uk/is/prospectivepg/courses/chem/in
dex.html and Indiana University, USA http://cheminfo.
informatics.indiana.edu, etc.). Generally, innovation happens
at the intersection between different research fields; therefore,
it is important to ensure that we bring in fresh blood from

perhaps non-intuitive fields. This may lead to new uses in
cheminformatics for older technologies from elsewhere. For
example, we have seen the auto industry and pharma sharing
best practices for manufacturing, e.g., just in time provision of
product, etc. What would it take to bring in some of the data
modelers, data miners, computer animators, interface devel-
opers (from other industries), defense industries or simulator
designers to provide help with pharmaceutical-derived chem-
informatics data visualization? Bringing together those skilled
in chemistry and informatics or these other disciplines may be
analogous to the field of systems biology (33,34), which tries to
integrate those skilled in mathematics, engineering, biology,
etc. It is important that there is a common language that
connects researchers from different backgrounds to aid in
integration (35). This may be academia’s role, and the NIH,
NSF and grant reviewers could ensure that they are funding
at least some truly ground-breaking initiatives, as well as
covering well-trodden ground. There may also be a role here
for other mechanisms to get involved, such as the pre-
competitive initiatives (36). More diversification of a portfolio
of efforts may be a good thing to drive innovation in
cheminformatics. While in the past the industry has been an
innovator in computational chemistry software (e.g., Merck
molecular forcefield (37)), can we expect this to be the case in
future? In a financially constrained environment it is likely that
such developments and risk will be borne outside the industry
or at least shared in a collaborative manner (e.g., Pistoia
Alliance). Already the open source cheminformatics data
pipelining initiatives like KNIME (38) (http://www.knime.
org) are nipping at the feet of the commercial software tools.
Cheminformatics companies need to “innovate or die” and
“innovate quickly” before they become red dwarfs (see the
recent merger between Accelrys, Inc. and Symyx Technolo-
gies, Inc. (http://accelrys.com/about/news-pr/0410-an
nouncement.html). We think the cheminformatics industry
could learn much from “the innovators dilemma” (39). There
are still significant holes. For example, there has been very
limited development of open pharmacophore tools to our
knowledge (http://pharmacophore.org), and this could do
with some attention. Mobile computing devices present a new
frontier (and business opportunity) with constraints in how
much can be shown on very small screen real estate, which
might drive cheminformatics software developers to consider
how they expose their tools to new users (40) in the
pharmaceutical industry or academia.

TECHNOLOGIES TO NAVIGATE THE CHEMICAL
UNIVERSE

What computational technologies could be combined or
applied in a new way to provide the catalyst for the field
that would enable us to navigate the chemical universe?
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What could be created from amashup of technologies, hybrids
or truly new tools? For example, now we have a hybrid in
which in vitro data and in silico approaches are used side by
side for absorption, distribution, metabolism, excretion and
toxicity (ADME/Tox) properties. As we had predicted in the
past (15), it took between 5–10 years for ADME/Tox data in
the industry to be of a scale useful for building reliable
predictive computational models. In the industry, we now
have tens to hundreds of thousands of datapoints for
individual ADME/Tox assays used in modeling, depending
on the company size and screening capability. How long will
it be before we almost completely replace the in vitro models
with computational models for absorption, metabolic stabil-
ity, P450 inhibition and P-gp in the same way that we have
for logP and solubility? Perhaps another 5–10 years, maybe
sooner based on the developments we are seeing.

Integration of tools that impart some medicinal chemis-
try expertise (like DrugGuru (41), rule bases (42) or
multiobjective library enumeration methods (43)), multiple
QSAR models and multidimensional optimization methods
(44) may help the user or go beyond making predictions for
many properties with computational models and instead
propose a synthetically reasonable alternative with im-
proved properties that considers all options of interest. This
certainly goes beyond highlighting a problematic part of a
molecule, whether reactive (42) or toxic, etc.

We certainly cannot possibly have all the answers yet
hope that by raising these challenges, in the future we (and
the reader) can apply some new technologies that will
greatly expand the influence of cheminformatics in phar-
maceutical research and simultaneously provide increased
confidence and improved interpretability of the outputs.
This may be one small step for mankind but a very big one
for cheminformatics.
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